LOW NOX CONTINUOUS EMISSIONS MEASUREMENTS FROM GAS TURBINES

Allan Budd & Tom Baldwin Baldwin, Inc.

2003 Conference on SCR and SNCR for NOx Control, Pittsburgh PA
October 30, 2003

BALDW

Background

- CARB Low NOx Committee
- UC Riverside CE-CERT Low NOx Study
- Dow Chemical Project (Gluck et. al.)
- GE N0x Analyzer Study
- Horiba Low NOx study (Downey et. al.)
- Baldwin Low NOx projects (Budd/Baldwin)
- USEPA method update (Harrison et. al.)

ssues

- Can a CEMS measure NOx at 1-10 ppmv in the real world?
- Can a CEMS measure NH₃ with sufficient accuracy for compliance or control?
- What must change in system design?
- What must change in O & M to make the accuracy sustainable?
- What must change in Reference Methods and stack testing procedures to support low NOx?
- What must change in monitoring equipment to enable low NOx (and NH₃₎ measurement?

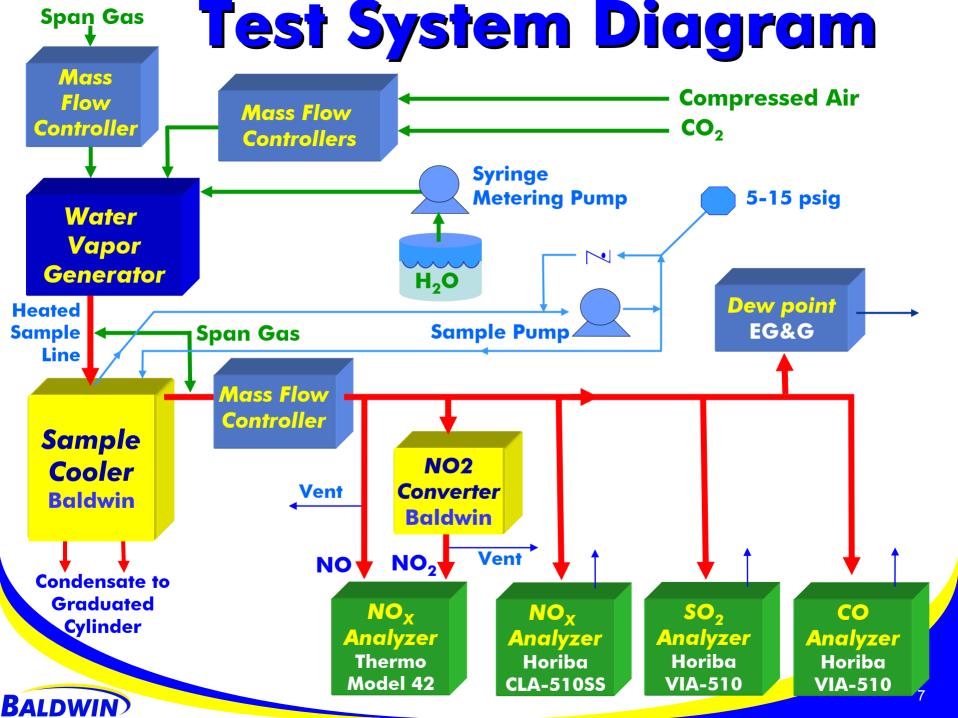
Systems Approaches

Dilution -

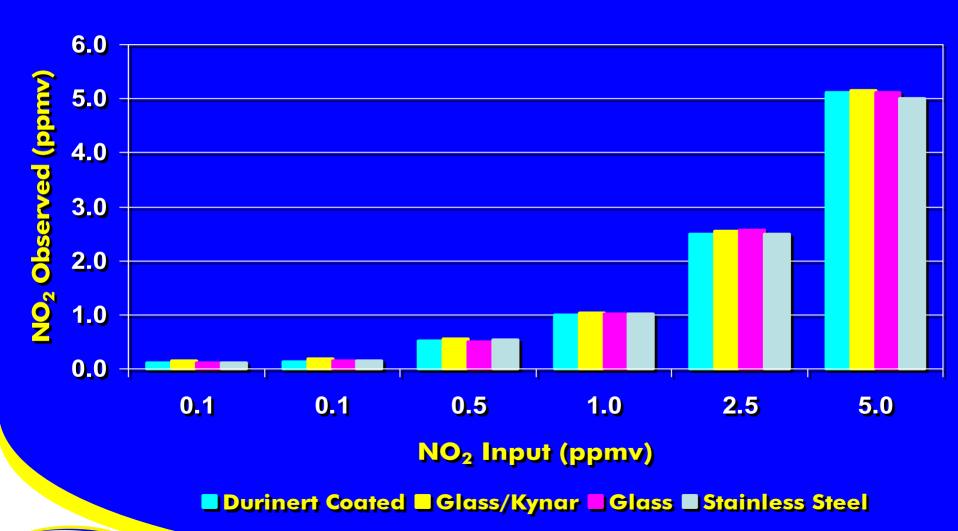
- Concentrations too low for practical accurate measurements
- Systems cost
- Doesn't eliminate NH₃ contamination
- Wet basis, requires water measurement (system bias)

Hot/Wet

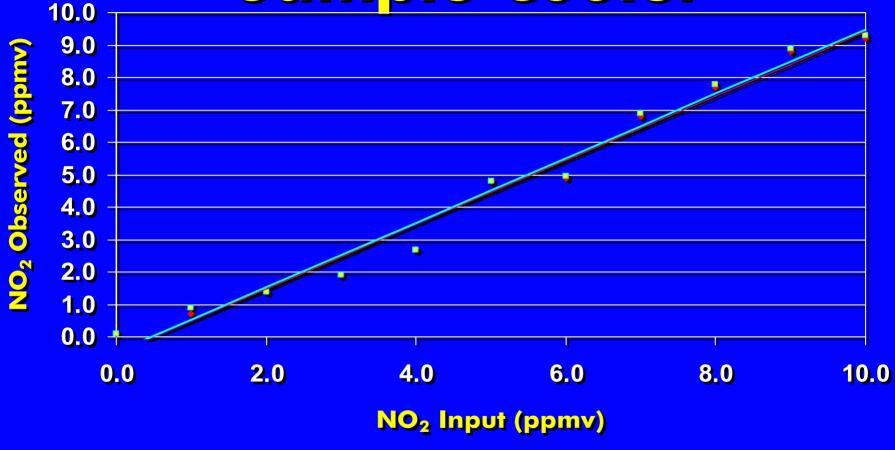
- Doesn't eliminate NH₃ contamination
- Heated analyzers cost
- Wet basis, requires water measurement (system bias)



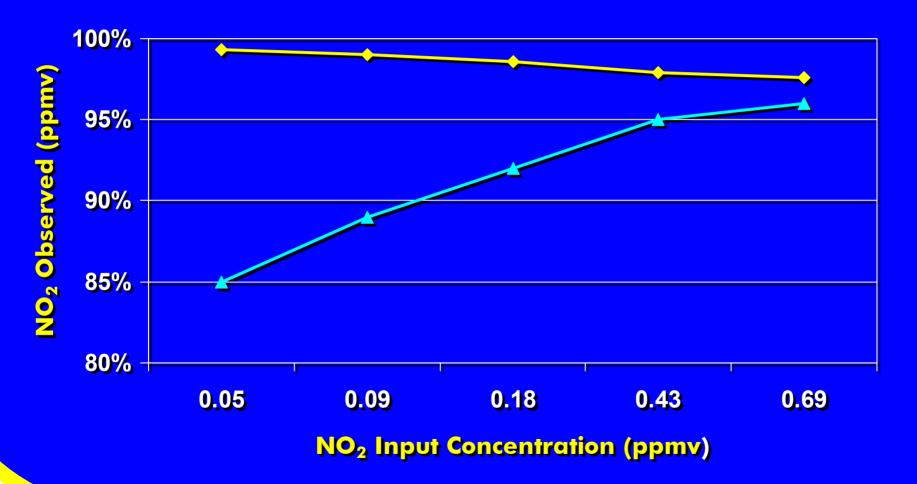
Conventional Extractive


- Results show excellent accuracy
- Dry basis
 - Same as reference method
 - Ease of certification
 - Direct reporting
 - No water measurement biases
- Simpler system design
- Lower N0x bias further by moving N0x Converter to sample point
 - Reduces bias from NO₂ loss
 - Makes system maintenance less critical

Standard Test Conditions


- NO/NO₂: variable 1-15 ppm
- Ammonia : 0–15 ppm
- CO₂ : 0-5% vol
- Water: 10% vol

Impinger Material Effects On NO₂ Absorption



NO₂ Transport Through Sample Cooler

NO2 IN
 NO2 OUT — Linear (NO2 IN) — Linear (NO2 OUT)

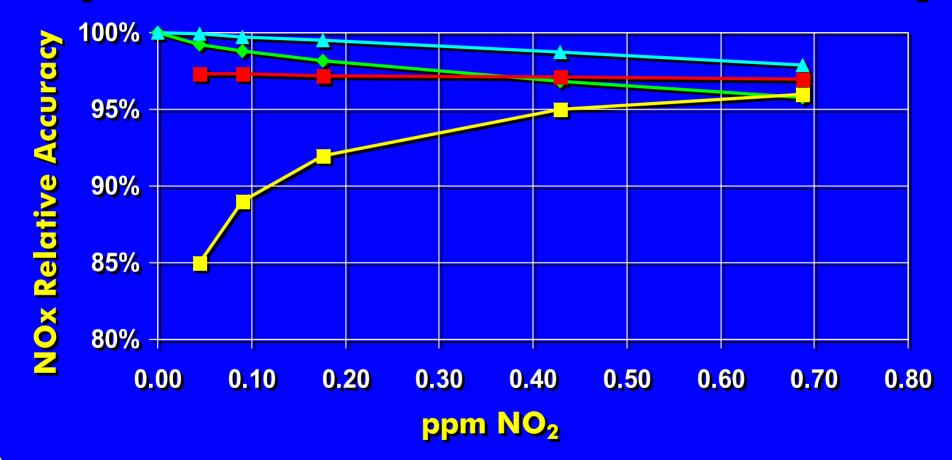
NO₂ Loss: Impact on Certification Accuracy

→ Nox Accuracy @ 1ppm Cert → NO2 Recovery

BALDWIN

Conclusions: NOx Only

- Down to 1ppm with up to $70\% \text{ NO}_2$ is measurable to better than $\pm 5\%$
 - Must use Low NOx components in system
 - System must be kept "Low NOx" clean
 - Chemi Analyzer must not have CO₂ error
 - High NOx exposure will bias results in a conventional system design
- Stack tester
 - Low NOx Reference System
 - Low NOx measurement familiarity


Reduce "Sensitivities"

- NO₂ is the sensitive point
 - Permeates Sample line
 - > Soluble in water (accounts for cooler loss)
 - Chemically reactive
- System components
 - Clean sample line
 - Treated sampling system components (Durinert)

Eliminate NO₂ Biases: Do Conversion at the Sampling Point

- Eliminates NO₂ bias
 - High levels of NO₂ @ startup/shutdown
 - Loss in sample line
 - Loss in water removal system
- Converter issues
 - >>95% conversion efficiency @ 2 l/min
 - Reliable less maintenance than sample filter
- Can be adapted to NH₃ measurement

On Stack NO₂ Conversion: Improvement in Relative Accuracy

- → NO2 Loss With On Stack Conversion → Relative Accuracy
- Relative Accuracy -L-NO2 Absorption

Add an SCR (NH₃)

- NOx Biases
 - Variable NO₂ Losses NH₃ + NO₂
 - Analyzer sample cell contamination
 - Sample line contamination
- Variable NH₃ Losses up to 100%
 - Presence of acidic gases (CO₂, SO₂, NO₂...)
 - Sample line

NOx Measurement with SCR

- Remove NH₃ at sample point for NOx only
 - Minimizes system contamination
 - Eliminates NH₃ interference
 - $-NH_3 + O_2 = NO$ in typical NOx converter
 - Even with carbon converter, NH₃ contamination is an issue
- Must deal with NH₃ Scrubber issues
 - > H₃PO₄ is most reliable system
 - NO₂ Loss

Ammonia Scrubber

- Eliminates usual NH₃ Scrubber problems
 - > 90°C operation eliminates condensate issue
- Does remove 12% of NO₂
 - Our data shows this is repeatable from 0.5–15 ppm NO₂
 - Not an issue in normal turbine operation where NO₂ is only 5-20% of NOx (@10% NO₂, 12% loss is only a 1.2% bias in the NOx value)
 - ▶ If 12% NO₂ loss is an issue, NO₂ Selective Converter in front of scrubber eliminates problem

On Stack Converter Performance

- Inconel/stainless converter
 - > NO₂: 97.3% @ 2 l/min
 - > NH₃: >90% @ 2 l/min
 - Synergistic NOx/NH₃ effect
- Low temperature carbon converter
 - > NO₂: 98% @ 2 l/min
 - NH₃: <1% @ 2 l/min</p>

NOx Measurement Conclusion

- Certifiable NOx measurements are possible with conventional extractive systems down to 1ppm NOx even with high NO₂ present and in the presence of low ppm NH₃
- Errors/Biases can be reduced by conversion of NO₂ to NO at the sampling point
- Ammonia can be reliably removed as an interferent when SCR's are in use